
Patterns

DecimalFormat patterns have the following syntax:

 Pattern:
 PositivePattern
 PositivePattern ; NegativePattern
 PositivePattern:
 Prefixopt Number Suffixopt
 NegativePattern:
 Prefixopt Number Suffixopt
 Prefix:
 any Unicode characters except \uFFFE, \uFFFF, and special
characters
 Suffix:
 any Unicode characters except \uFFFE, \uFFFF, and special
characters
 Number:
 Integer Exponentopt
 Integer . Fraction Exponentopt
 Integer:
 MinimumInteger
 #
 # Integer
 # , Integer
 MinimumInteger:
 0
 0 MinimumInteger
 0 , MinimumInteger
 Fraction:
 MinimumFractionopt OptionalFractionopt
 MinimumFraction:
 0 MinimumFractionopt
 OptionalFraction:
 # OptionalFractionopt
 Exponent:
 E MinimumExponent
 MinimumExponent:
 0 MinimumExponentopt

A DecimalFormat pattern contains a positive and negative subpattern, for example,
"#,##0.00;(#,##0.00)". Each subpattern has a prefix, numeric part, and suffix. The
negative subpattern is optional; if absent, then the positive subpattern prefixed with the localized
minus sign ('-' in most locales) is used as the negative subpattern. That is, "0.00" alone is
equivalent to "0.00;-0.00". If there is an explicit negative subpattern, it serves only to specify
the negative prefix and suffix; the number of digits, minimal digits, and other characteristics are all
the same as the positive pattern. That means that "#,##0.0#;(#)" produces precisely the same
behavior as "#,##0.0#;(#,##0.0#)".

The prefixes, suffixes, and various symbols used for infinity, digits, thousands separators, decimal
separators, etc. may be set to arbitrary values, and they will appear properly during formatting.
However, care must be taken that the symbols and strings do not conflict, or parsing will be
unreliable. For example, either the positive and negative prefixes or the suffixes must be distinct for
DecimalFormat.parse() to be able to distinguish positive from negative values. (If they are

identical, then DecimalFormat will behave as if no negative subpattern was specified.) Another
example is that the decimal separator and thousands separator should be distinct characters, or
parsing will be impossible.

The grouping separator is commonly used for thousands, but in some countries it separates ten-
thousands. The grouping size is a constant number of digits between the grouping characters, such
as 3 for 100,000,000 or 4 for 1,0000,0000. If you supply a pattern with multiple grouping
characters, the interval between the last one and the end of the integer is the one that is used. So
"#,##,###,####" == "######,####" == "##,####,####".

Special Pattern Characters

Many characters in a pattern are taken literally; they are matched during parsing and output
unchanged during formatting. Special characters, on the other hand, stand for other characters,
strings, or classes of characters. They must be quoted, unless noted otherwise, if they are to appear
in the prefix or suffix as literals.

The characters listed here are used in non-localized patterns. Localized patterns use the
corresponding characters taken from this formatter's DecimalFormatSymbols object instead,
and these characters lose their special status. Two exceptions are the currency sign and quote, which
are not localized.

Symbol Location Localized? Meaning

0 Number Yes Digit

Number Yes Digit, zero shows as absent

. Number Yes Decimal separator or monetary decimal separator

- Number Yes Minus sign

, Number Yes Grouping separator

E Number Yes Separates mantissa and exponent in scientific notation.
Need not be quoted in prefix or suffix.

; Subpattern boundary Yes Separates positive and negative subpatterns

% Prefix or suffix Yes Multiply by 100 and show as percentage

\u2030 Prefix or suffix Yes Multiply by 1000 and show as per mille value

¤ (\u00A4) Prefix or suffix No Currency sign, replaced by currency symbol. If doubled,
replaced by international currency symbol. If present in a pattern,
the monetary decimal separator is used instead of the decimal
separator.

' Prefix or suffix No Used to quote special characters in a prefix or suffix, for example,
"'#'#" formats 123 to "#123". To create a single quote itself,
use two in a row: "# o''clock".

Scientific Notation

Numbers in scientific notation are expressed as the product of a mantissa and a power of ten, for
example, 1234 can be expressed as 1.234 x 10^3. The mantissa is often in the range 1.0 <= x < 10.0,
but it need not be. DecimalFormat can be instructed to format and parse scientific notation only
via a pattern; there is currently no factory method that creates a scientific notation format. In a
pattern, the exponent character immediately followed by one or more digit characters indicates
scientific notation. Example: "0.###E0" formats the number 1234 as "1.234E3".

• The number of digit characters after the exponent character gives the minimum exponent

digit count. There is no maximum. Negative exponents are formatted using the localized
minus sign, not the prefix and suffix from the pattern. This allows patterns such as
"0.###E0 m/s".

• The minimum and maximum number of integer digits are interpreted together:
• If the maximum number of integer digits is greater than their minimum number and

greater than 1, it forces the exponent to be a multiple of the maximum number of
integer digits, and the minimum number of integer digits to be interpreted as 1. The
most common use of this is to generate engineering notation, in which the exponent
is a multiple of three, e.g., "##0.#####E0". Using this pattern, the number 12345
formats to "12.345E3", and 123456 formats to "123.456E3".

• Otherwise, the minimum number of integer digits is achieved by adjusting the
exponent. Example: 0.00123 formatted with "00.###E0" yields "12.3E-4".

• The number of significant digits in the mantissa is the sum of the minimum integer and
maximum fraction digits, and is unaffected by the maximum integer digits. For example,
12345 formatted with "##0.##E0" is "12.3E3". To show all digits, set the significant
digits count to zero. The number of significant digits does not affect parsing.

• Exponential patterns may not contain grouping separators.

	Patterns
	Special Pattern Characters
	Scientific Notation

